Note on domains: When we assume a domain, we can simply define it (as an axiom). The typical way to define something like this is one of the two following:

- a. Let D_e be the set of all entities
- b. $D_e = \{ x \mid x \text{ is an entities } \}$

This is why we could replace { $x \mid x \text{ is a KU student}$ } in the handout with Z or whatever variable we like.

1. Fill in the blank spots, with a characteristic set or a function in λ -notation.

(1) { $x \in D \mid x \text{ runs } $	$f: D \to \{1,0\}$	$\lambda x \in D. runs(x)$
(2)	For all x, $f(x) = 1$ if and only if x runs. f: D \rightarrow {1,0}	
(-)	For all x, $f(x) = 1$ if and only if x woke	2
	up.	
(3)	$f: C \rightarrow \{1,0\}$	
	For all x , $f(x) = 1$ if and only if x laughed	

2. Write the denotations of the following English expressions as functions, using the λ -notation.

1. *sit* 2. *be happy* 3. *hurry*

3. β -Convert each of the following λ -expressions (*i.e.* give the result of plugging in these arguments). Then, give the English expression that corresponds to that result.

- 1. [$\lambda x \in D$. barks(x)](Fido)
- 2. [$\lambda y \in D$. [is singing](y)](Eleanor)
- 3. [$\lambda y \in D$. orange(y)](Snoopy)