
F10 The λ-calculus
Course in Semantics · Ling 531 / 731

McKenzie · University of Kansas

1 Introducing

Before we move on, we will introduce a final piece of the notation puzzle. The lambda (or λ-)calculus is
a method of formalizing functions that makes it easier to see how they combine. It was developed in the
1930’s by Alonzo Church, a mathematician and pioneer in computer science.

1.1 Rewriting functions

The λ-calculus rewrites functions as a variable and a binder.

(1) f(x) = x2 becomes λx.x2

assuming f = λx.x2

(2) f(3) = 32 = 9 becomes [λx.x2](3) = 32 = 9

How does it work for us?

(3) a. J smokes K = f : D→ {1,0}
For all x, f(x) = 1 if and only if x smokes

b. J smokes K = λx ∈ D. smokes(x)

1.2 Breaking it down

Every λ-expression has three basic parts.

λx ∈ D . smokes(x)
↑ ↑ ↑

argument domain value
variable condition condition

READ: lambda x in D, smokes (of) x

• Any domain can be used in the domain condition

• Any variable can be used

• You can switch out variables, so long as you don’t change what binds what

(4) λx ∈ D. smokes(x) = λy ∈ D. smokes(y)

1



1.3 Abbreviation

• We will write the value condition in function(argument) style.1

• The VC is an abbreviation of: 1 if x smokes and 0 otherwise

• If the function in the VC has more than one word, put it in brackets.

(5) J has cats K = λx ∈ D. [has cats](x)

2 Functional Application with Lambda Calculus

One of the basic operations of the λ-calculus is β-reduction, which involves applying an argument to a func-
tion and reducing the λ-expression. β-reduction corresponds nicely to the compositional rule of Functional
Application.

Recall the following equivalence:

(6) a. J smokes K = f : D → {1,0}
For all x, f(x) = 1 if and only if x smokes

b. J smokes K = λx ∈ D. smokes(x)

That means, in the semantic composition, we can switch these out seamlessly.

(7) Alissa smokes
a. J Alissa K = Alissa
b. J smokes K = f : D → { 1, 0 }

for all x ∈ D,
f(x) = 1 iff x smokes

= λx ∈ D. smokes(x)

(8) S

NP

N◦

Alissa

VP

V◦

smokes

↓

FA : J smokes K(J Alissa K)

NN : J Alissa K

TN : J Alissa K

NN : J smokes K

TN : J smokes K

→
FA : [λx ∈ D. smokes(x)](Alissa)

NN : Alissa

TN : Alissa

NN : λx ∈ D. smokes(x)

TN : λx ∈ D. smokes(x)

1In the literature, you will see a number of ways of writing the value condition. Some authors put the functions in SMALL CAPS:
λx ∈ D. SMOKES(y) Others will write it out as “x smokes”: λx ∈ D. x smokes. Others will place the value condition in brackets:
λx ∈ D[smokes(x)]. Some will combine different ways. I don’t know of anyone, though, who abbreviates it as ”λx ∈ D. 1 if x smokes,
0 otherwise”.

2



What do we do with [λx ∈ D. smokes(x)](Alissa)?

1. Start with the [function](argument) notation. Use brackets if you need to mark off the λ-expression.

(1) [λx ∈ D. smokes(x)](Alissa)

2. Find the argument variable at the left edge of the expression.

(2) [λx ∈ D. smokes(x)](Alissa)

3. Find every instance of the same variable in the value condition.

(3) [λx ∈ D. smokes(x)](Alissa)

4. Replace every instance of the variable in the value condition with the argument.

(4) [λx ∈ D. smokes(Alissa)](Alissa)

5. Remove the argument from the right edge of the expression.

(5) [λx ∈ D. smokes(Alissa)](Alissa)→ [λx ∈ D. smokes(Alissa)]

6. Remove the argument variable (and its domain condition)

(6) [λx ∈ D. smokes(Alissa)]→ [smokes(Alissa)]

7. You don’t need the brackets anymore.

(7) smokes(Alissa)

Now we can re-write the tree: FA : smokes(Alissa)

NN : Alissa

TN : Alissa

NN : λx ∈ D. smokes(x)

TN : λx ∈ D. smokes(x)

Recall that the ‘smokes(x)’ in λx ∈D. smokes(x) is short for “1 if x smokes and 0 if x doesn’t.” Likewise, our
expression, smokes(Alissa), is short for “1 if Alissa smokes and 0 if Alissa doesn’t.”

3



3 Bad lambdas

Watch out for these two common pitfalls.

1. Vacuous binding. Make sure that every argument variable is represented in the value condition. Other-
wise, FA will have no effect. In the tree below, λx is not binding anything (hence ‘vacuous’ ["væk.ju.Is]). So
when we plug Bill into it, nothing happens; Bill just disappears.

(8) smokes(Alissa)

λx ∈ D. smokes(Alissa) Bill

If you unpack smokes(Alissa) you’ll see why: λx∈D. smokes(Alissa) = f : D→ {1,0}
For all x, f(x) = 1 if and only if Alissa smokes

2. Unbound variable. Make sure that every variable in the value condition is bound by a single argument
variable binder. A free variable in a λ-structure is uninterpretable, except as a name. That is, it isn’t really a
variable and we can’t change it via functional application.

In the tree below, the variable y is not bound by anything, so we cannot get rid of it. If we don’t know what
y is, we can’t formulate truth-conditions, so the result would be nonsense.

(9) Bill sees y

λx ∈ D. x sees y Bill

4


