Course in Semantics · Ling 531 / 731 McKenzie · University of Kansas

Key

Note on domains: When we assume a domain, we can simply define it (as an axiom). The typical way to define something like this is one of the two following:

- a. Let D_e be the set of all entities
- b. $D_e = \{ x \mid x \text{ is an entities } \}$

This is why we could replace $\{x \mid x \text{ is a KU student }\}$ in the handout with Z or whatever variable we like.

1. Fill in the blank spots, with a characteristic set or a function in λ -notation.

(1)	$\{ x \in D \mid x \text{ runs } \}$	$f: D \rightarrow \{1,0\}$ For all x , $f(x) = 1$ if and only if x runs.	$\lambda x \in D. \text{ runs}(x)$
(2)	$\{ x \in C \mid x \text{ woke up } \}$	$f: D \rightarrow \{1,0\}$ For all x , $f(x) = 1$ if and only if x woke	$\lambda x \in D$. [woke up](x)
(3)	$\{ x \in C \mid x \text{ laughed } \}$	up. $f: C \rightarrow \{1,0\}$ For all x, $f(x) = 1$ if and only if x laughed.	$\lambda x \in C$. laughed(x)

- **2.** Write the denotations of the following English expressions as functions, using the λ -notation.
 - 1. sit 2. happy 3. hurry $\lambda x \in D$. sit(x) $\lambda x \in D$. [is happy](x) $\lambda x \in D$. hurry(x)
- **3.** β -Convert each of the following λ -expressions (*i.e.* give the result of plugging in these arguments). Then, give the English expression that corresponds to that result.
 - 1. $[\lambda x \in D. \ barks(x)]$ [Fido)barks(Fido); Fido barks2. $[\lambda y \in D. \ [is \ singing](y)]$ [Eleanor)[is \ singing](Eleanor); Eleanor is \ singing3. $[\lambda y \in D. \ orange(y)]$ (Snoopy)orange(Snoopy); Snoopy is orange