
F11 Transitivity
Course in Semantics · Ling 531 / 731

McKenzie · University of Kansas

1 Functions with multiple arguments

So far we’ve been using intransitive verbs as functions. Functional application is very simple with these.
Some verbs have two arguments, though: Transitives.

(1) Becky chased Tom.

If J chased K is a function, its meaning depends on two arguments. How do we formalize that?

Functions can have as many arguments as one likes. A one-place function has 1 argument. A two-place
function has two, and so on.

With a two-place function, the two arguments need to be ordered, since the propositions x chased y and y
chased x have distinct truth-conditions.

(2) J chased K = f : D × D→ {1, 0}
for all 〈x, y〉 ∈ D × D,
f(〈x, y〉) = 1 if and only if y chased x

We can turn this into a λ-expression.

(3) J chased K = λ〈x, y〉 ∈ D × D. chased(〈x, y〉)

Plugging in the pair 〈Becky, Tom, ,〉we get a truth-value:

(4) J Becky chased Tom K = [λ〈x, y〉 ∈ D × D. chased(〈x, y〉)](〈Becky, Tom〉) =
[λ〈x, y〉 ∈ D × D. chased(〈Becky, Tom〉)] =
chased(〈Becky, Tom〉)

However, we run into a problem when we try to build the semantics off the syntax. For the subject and
object of a verb do not merge simultaneously. The object merges first.

(5) S

NP

N◦

Becky

VP

V◦

chased
NP

N◦

Tom

How can we get our two-place function to work with the syntax? With a process that’s usually called
currying.1

Basically, currying involves taking a two-place function, and breaking it into a sequence of one-place func-
tions.

f(〈x, y〉) 7→ [f(x)](y)

1Named after mathematician Haskell Curry. It is also called Schönfinkelization, after Moses Schönfinkel, who developed it prior
to Curry. Curry took it to the next level and it caught on then. But as it turns out, the first person recorded to do it was actually
. . . Frege.

1



In the λ-calculus:

λ〈x, y〉. x+ y 7→ λx.[λy. x+ y]

Once curried, the function takes one argument, then gives you a new function, which takes the second
argument. This is exactly what we see in a transitive verb.

(6) J chased K = f : D→ { g | g : D→ { 1, 0 } }
for all x ∈ D, f(x) = g: D→ { 1, 0 }

for all y ∈ D, g(y) = 1 iff y chased x

READ: The denotation of chased is the function f such that f maps from D to the set of functions from
D to {1, 0}, such that for all x in D, f of x equals the function g, such that g maps from D to the set
containing 1 and 0, such that for all y in D, g(y) equals 1 if and only if y chased x.

Now, that’s quite a mouthful. In λ-notation it’s easier:

(7) J chased K = λx ∈ D. λy ∈ D. chased(x)(y)
READ: lambda x in D, lambda y in D, chased x y

2 Composition

So, we have our sentence and its LF

(8) S

NP

N◦

Becky

VP

V◦

chased
NP

N◦

Tom

We have our denotation of the verb, inserted via TN.

(9) VP

V◦

chased
NP

N◦

Tom

↓

FA : J chased K(J Tom K)

TN : J chased K NN : J Tom K

TN : J Tom K

→
FA : [λx ∈ D. λy ∈ D. chased(x)(y)](Tom)

TN : λx ∈ D. λy ∈ D. chased(x)(y) NN : Tom

TN : Tom

2



From here, the process is the same as with intransitives; we just do it twice.

1. Find the leftmost λ-operator and variable argument. Replace every instance of the variable in the value
condition with the argument. Remove the argument, then remove the leftmost operator and variable argu-
ment.

1. [λx ∈ D. λy ∈ D. chased(x)(y)](Tom)

2. [λx ∈ D. λy ∈ D. chased(Tom)(y)](Tom)

3. [λx ∈ D. λy ∈ D. chased(Tom)(y)]

4. λy ∈ D. chased(Tom)(y)

Notice how we’re left with a function. The input to that will be the subject.

(10) FA : J chased K(J Tom K)

TN : J chased K NN : J Tom K

TN : J Tom K

→
FA : λy ∈ D. chased(Tom)(y)

TN : λx ∈ D. λy ∈ D. chased(x)(y) NN : Tom

TN : Tom

2. Repeat the process as usual. Note: The part we built above is highlighted in blue in the semantic trees.
This part will not change.

(11) S

NP

N◦

Becky

VP

V◦

chased
NP

N◦

Tom

↓

FA : [J chased K(J Tom K)](J Becky K)

NN : J Becky K

TN : J Becky K

FA :J chased K(J Tom K)

TN : J chased K NN : J Tom K

TN : J Tom K

↓

FA : [λy ∈ D. chased(Tom)(y)](Becky)

NN : Becky

TN : Becky

FA : λy ∈ D. chased(Tom)(y)

TN : λx ∈ D. λy ∈ D. chased(x)(y) NN : Tom

TN : Tom

3



1. [λy ∈ D. chased(Tom)(y)](Becky)

2. [λy ∈ D. chased(Tom)(Becky)](Becky)

3. [λy ∈ D. chased(Tom)(Becky)]

4. chased(Tom)(Becky)

What we end up with, chased(Tom)(Becky), is an abbreviation for “1 if Becky chased Tom; 0 otherwise”

So, the whole semantic tree, if you were looking at it without the intermediate steps, would look like
this:

FA : chased(Tom)(Becky)

NN : Becky

TN : Becky

FA : λy ∈ D. chased(Tom)(y)

TN : λx ∈ D. λy ∈ D. chased(x)(y) NN : Tom

TN : Tom

Notice how the object is closer to the function than the subject. This is a result of the syntax. The first
argument is ‘closer’ to the function, but it’s the syntax that makes the first semantic argument happen
to be the object. Notice that we wrote our result as chased(Tom)(Becky). A stricter version would be
[chased(Tom)](Becky). . . showing that chased(Tom) is a unit.

4


