
F16-Exercise
Course in Semantics · Ling 531 / 731

McKenzie · University of Kansas

Key

1 Walkthrough

(1) red house

First the LF: The adjective projects to AP, which adjoins to the NP (2). We use the more recent theories of
projection, which don’t have X labels, but which generally do distinguish between medial and maximal XP
projections (e.g., Kayne 1994). So N◦ → NP can be one step if it’s just the noun (like we saw), or more steps
if there are adjuncts or specifiers.1

(2) NP

AP

A◦

red

NP

N◦

house

Then the lexical entries: Both red and house denote properties of individuals. Neither is a referring expres-
sion.

(3) a. J red K = λx ∈ De. red(x) : 〈e, t〉 (char. function of { x ∈ De | x is red })
b. J house K = λx ∈ De. house(x) : 〈e, t〉 (char. function of { x ∈ De | x is a house })

Composition. The lexical entries are the denotations of the respective syntactic heads. They are inserted
using the Terminal Nodes rule, then carried upward by the Non-branching nodes rule.

(4)

NN : 〈e, t〉
λx ∈ De. red(x)

TN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

TN : 〈e, t〉
λx ∈ De. house(x)

We cannot employ functional application here. Why not? Check out the input types for each.

Check out the input type by looking at the leftmost λ-argument’s domain condition. J red K’s domain is the
set De, which we have defined as the set of individuals. So any object that red can be about is going to be
an individual, of type e. So we can say that J red K’s input is of type e. We can start writing J red K’s type like
this: 〈e,

(5) J red K = λx ∈ De . red(x)
domain

1Going even further, the development of “Bare phrase structure” (Chomsky 1995) does away with labels altogether, and makes no
concrete distinction between heads and phrases; the latter are simply what results from merging new elements. Ultimately, under our
model of the grammar, where the syntax feeds the semantics, none of these crucial syntactic issues matter for the ultimate result of the
interpretation.

1

While we’re at it, let’s stop a moment and find the output type of J red K. We can find the output type of
the function by ascertaining the type of everything after its leftmost λ-argument. In this case, there is only
one λ-argument. After that is red(x), which we have adopted as an abbreviation of 1 if x is red, 0 if not.
That is, the part after λx ∈ De. denotes 1 or 0. . . these are the two truth-values. We named Dt as the set of
truth-values, so J red K’s output is in Dt. Truth-values are of type t. So, the output of J red K is of type t. We
can finish writing the type of J red K: 〈e, t〉

The same method applies to J house K.

Now, coming back to our input— the input to J red K needs to be of type e. If something’s not of type e, we
can’t plug it in to J red K. In essence, if it isn’t an individual, it can’t have the property of being red (or the
property of not being red). Since J house K is of type 〈e, t〉, we can’t plug it into J red K. And vice versa.

To get around this block, and to account for the other observed features of modification, we employ a new
rule of composition, called Predicate Modification.

Rule 4:
Predicate Modification (PM):
If α is a branching node, whose daughters are {β,γ},
and if both Jβ K and Jγ K are of type 〈σ, τ〉, then
Jα K = λa ∈ Dσ. Jβ K(a) = 1 & Jγ K(a) = 1

Note: this varies slightly from the rule in the lecturelet. That one had a typo, which is corrected here.

In tree form, this rule looks like this:

λa ∈ Dσ. Jβ K(a) = 1 & Jγ K(a) = 1 : 〈σ, τ〉

Jβ K : 〈σ, τ〉 Jγ K : 〈σ, τ〉

Let’s replace this abstract thing with our tree. Since Jβ K = λx ∈ De. red(x), we can replace the one with the
other.

PM : 〈e, t〉
λa ∈ Dσ. Jβ K(a) = 1 & Jγ K(a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

Jγ K : 〈σ, τ〉

Same goes for Jγ K and λx ∈ De. house(x).

PM : 〈e, t〉
λa ∈ Dσ. Jβ K(a) = 1 & Jγ K(a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

Now for the mother node. Change the domain condition so it’s the same as that of the daughters.

PM : 〈e, t〉
λa ∈ De. Jβ K(a) = 1 & Jγ K(a) = 1

NN : 〈e, t〉
λa ∈ De. red(x)

NN : 〈e, t〉
λa ∈ De. house(x)

We can replace Jβ K again in the mother node.

2

PM : 〈e, t〉
λa ∈ De. [λx ∈ De. red(x)](a) = 1 & Jγ K(a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

We can also replace Jγ K again in the mother node.

PM : 〈e, t〉
λa ∈ De. [λx ∈ De. red(x)](a) = 1 & [λx ∈ De. house(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

Now, we have two λ-function/argument structures that we can reduce. For J red K, plug in a for every
instance of x, and voilà!

PM : 〈e, t〉
λa ∈ De. red(a) = 1 & [λx ∈ De. house(x)](a) = 1

λa ∈ De. [λx ∈ De. red(x)](a) = 1 & [λx ∈ De. house(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

For J house K, do the same: plug in a for every instance of x, and voilà!

PM : 〈e, t〉
λa ∈ De. red(a) = 1 & house(a) = 1

λa ∈ De. [λx ∈ De. red(x)](a) = 1 & [λx ∈ De. house(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. red(x)

NN : 〈e, t〉
λx ∈ De. house(x)

And there you have it. J red house K = λa ∈ De. red(a) = 1 & house(a) = 1

Recall that we can use any variable we like; here we’ve used a, but most people will still use x, y, z.

3

2 Exercise

Now you try it!

(1) happy dog NP

AP

A◦

happy

NP

N◦

dog

PM : 〈e, t〉
λa ∈ De. happy(a) = 1 & dog(a) = 1

λa ∈ De. [λx ∈ De. happy(x)](a) = 1 & [λx ∈ De. dog(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. happy(x)

TN : 〈e, t〉
λx ∈ De. happy(x)

NN : 〈e, t〉
λx ∈ De. dog(x)

TN : 〈e, t〉
λx ∈ De. dog(x)

Now, plug your NP into a DP.

(2) the happy dog
DP

D◦

the
NP

AP

A◦

happy

NP

N◦

dog
FA : e

ιx ∈ Ce[happy(x) = 1 & dog(x) = 1]
ιx ∈ Ce[[λa ∈ De. happy(a) = 1 & dog(a) = 1](x)]

TN : 〈〈e, t〉, e〉
λf ∈ D〈e, t〉. ιx ∈ Ce[f(x)]

PM : 〈e, t〉
λa ∈ De. happy(a) = 1 & dog(a) = 1

λa ∈ De. [λx ∈ De. happy(x)](a) = 1 & [λx ∈ De. dog(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. happy(x)

TN : 〈e, t〉
λx ∈ De. happy(x)

NN : 〈e, t〉
λx ∈ De. dog(x)

TN : 〈e, t〉
λx ∈ De. dog(x)

Try a few more NPs

(3) persnickety neighbor NP

AP

A◦

persnickety

NP

N◦

neighbor

4

PM : 〈e, t〉
λa ∈ De. persnickety(a) = 1 & neighbor(a) = 1

λa ∈ De. [λx ∈ De. persnickety(x)](a) = 1 & [λx ∈ De. neighbor(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. persnickety(x)

TN : 〈e, t〉
λx ∈ De. persnickety(x)

NN : 〈e, t〉
λx ∈ De. neighbor(x)

TN : 〈e, t〉
λx ∈ De. neighbor(x)

(4) enormous victory NP

AP

A◦

enormous

NP

N◦

victory
PM : 〈e, t〉

λa ∈ De. enormous(a) = 1 & victory(a) = 1
λa ∈ De. [λx ∈ De. enormous(x)](a) = 1 & [λx ∈ De. victory(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. enormous(x)

TN : 〈e, t〉
λx ∈ De. enormous(x)

NN : 〈e, t〉
λx ∈ De. victory(x)

TN : 〈e, t〉
λx ∈ De. victory(x)

(5) trifling matter NP

AP

A◦

trifling

NP

N◦

matter

PM : 〈e, t〉
λa ∈ De. trifling(a) = 1 & matter(a) = 1

λa ∈ De. [λx ∈ De. trifling(x)](a) = 1 & [λx ∈ De. matter(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. trifling(x)

TN : 〈e, t〉
λx ∈ De. trifling(x)

NN : 〈e, t〉
λx ∈ De. matter(x)

TN : 〈e, t〉
λx ∈ De. matter(x)

(6) big, dumb ox
NP

AP

A◦

big

NP

AP

A◦

dumb

NP

N◦

ox

5

λa ∈ De. big(a) = 1 & [dumb(a) = 1 & ox(a) = 1] = 1
λa ∈ De. [λx ∈ De. big(x)](a) = 1 & [λa ∈ De. dumb(a) = 1 & ox(a) = 1](a) = 1

NN : 〈e, t〉
λx ∈ De. big(x)

TN : 〈e, t〉
λx ∈ De. big(x)

PM : 〈e, t〉
λa ∈ De. dumb(a) = 1 & ox(a) = 1

λa ∈ De. [λx ∈ De. dumb(x)](a) = 1 & [λx ∈ De. ox(x)](a) = 1

NN : 〈e, t〉
λx ∈ De. dumb(x)

TN : 〈e, t〉
λx ∈ De. dumb(x)

NN : 〈e, t〉
λx ∈ De. ox(x)

TN : 〈e, t〉
λx ∈ De. ox(x)

6

