
F23: Relative clauses
Course in Semantics · Ling 531 / 731

McKenzie · University of Kansas

In this lecturelet, we will :

• discuss relative clauses

• introduce variable binding,

• develop a semantics for relative clauses

• introduce predicate abstraction to compose binders

1 Relative clause syntax

A relative clause is an embedded clause that modifies an entity. In English, they are marked in three
ways.

1. A wh- pronoun at the relative clause’s left edge.

(1) I met a doctor [who you know].

2. A complementizer at the relative clause’s left edge.

(2) A doctor [that you know] is outside.

3. No apparent marking.

(3) A doctor [you know] is outside.

Relative clauses are linked to a head noun, which is outside the clause.

(4) I met a doctor [who you know].

At least in English. . . Many languages leave the head noun inside the clause. These clauses are known as
internally-headed relative clauses. Kiowa is one such language (although the head can be extraposed).

Kiowa

(5) [ÓgÒ
SUB

>
tségùn
dog

bá:ò
cat

∅=
3SG:3SG=

ál−hêl
chase.PFV−HEARSAY

] =dè
=REL

gjà=
1SG:3SG=

b´̃o:
see.PFV

‘I saw the dog that chased the cat.’ or
‘I saw the cat that chased the dog.’

Some languages (like Korean) allow both kinds of relative clauses. We will focus on the English type,
though, which are called externally-headed relative clauses.

Many languages allow right-edge extraposition of a relative clause. We will ignore this.

(6) a. I gave her [some professor [who works with me]’s card]DP.
b. I gave her [some professor’s card]DP [who works with me].

(7) a. Susan brought up [an issue]DP at the meeting yesterday [that nobody had thought of before].
b. Susan brought up [an issue [that nobody had thought of before].]DP at the meeting yesterday

1

German (Pochmann & Wagner 2015)

(8) [DP Jeder
every

Wanderer
hiker

] hat
has

das
the

Riemannhaus
Riemannhaus

erreicht,
reached

[CP der
who

Schneeschuhe
snow shoes

trug.
wore

]

‘Every hiker who was wearing snow shoes has reached the Riemannhaus.’

Another distinction often made concerns the role of the head in the embedded clause.

Subject relatives have a head that is the subject of the relative clause.

(9) There’s [a doctor [who knows you]] waiting over there.

Object relatives have a head that is the object of the relative clause.

(10) There’s [a doctor [who(m) you know]] waiting over there.

Externally-headed relative clauses are built through wh- movement to a CP projection (or S in older vari-
eties). The CP adjoins to the head NP. (see Adger & Ramchand 2006 for a discussion of Irish relative clauses
that can use base-generation instead of movement).

Inside the CP, we will include both the relative pronoun (which, who) and the complementizer (that), even
though one or both will not be pronounced. That non-pronunciation is a problem for the phonological
spell-out.

(11) The dog which/that ate the bone

DP

D◦

the
NP

NP

N◦

dog

CP

DP
which

CP

C◦

that
S

t VP

V◦

ate
DP

the bone

(12) The bone the dog ate

DP

D◦

the
NP

NP

N◦

bone

CP

DP
which

CP

C◦

that
S

DP

the dog

VP

V◦

ate
t

2

2 Semantics of relative clauses

The semantics of an externally-headed relative clause is fairly simple. It acts like a modifying property.

(13) a. The crepe which had Nutella was delicious.
The crepe, which had the property of having Nutella, was delicious

b. The crepe with Nutella was delicious.

(14) a. The delicious crepe had Nutella. (As opposed to the foul-tasting one)
b. The crepe that was delicious had Nutella.

The crepe, which had the property of being delicious, had Nutella

Relative clauses can be recursively stacked:

(15) The crepe which had Nutella that I made yesterday was delicious.

A relative clause can also be either restrictive or non-restrictive (see Potts (2005) for a finer-grained distinc-
tion):

(16) The man who heads the Catholic Church is from Argentina.

(17) Pope Francis, who heads the Catholic Church, is from Argentina.

Prescriptivists will claim that which is used only with non-restrictive relatives, and that is used only with
restrictive ones.

We will again focus on restrictive relative clauses.

If a relative clause denotes a property, then it takes an argument and gives you 1 if the argument has the
property. That is, if it’s in the right set of things.

(18) J which had Nutella K = J with Nutella K = λx ∈ De. had(Nutella)(x) = { x ∈ De | x had Nutella }
(19) J which was delicious K = J delicious K = λx ∈ De. tastiness(x) ≤ d = { x ∈ De | x was delicious }

So now to our question: If a relative clause (a CP) and an adjective (an AP) mean the same thing. . . how
does that work in the composition?

Let’s look at the syntax of a simpler clause. Remember that this is the LF, so the deletion of which or that is
not an issue. They are both present in the semantics.

(20) The [NP crepe [CP which was delicious]] CPmax

DP
which

CP

C◦

that
S

t VP

was delicious

The CPmax and the VP mean the same thing.

(21) J CPmax K = λx ∈ De. delicious(x) : ⟨e, t⟩
(22) J VP K = λx ∈ De. delicious(x) : ⟨e, t⟩

3

What does the trace mean? It’s a terminal node, but it is not lexically defined. Its meaning is tied to the
meaning of what left it behind. How do we tie link syntactic objects together? Co-indexation, which also
resolves a number of syntactic facts. Traces are co-indexed to a binding DP.

(23) The [NP crepe [CP which1 was t1 delicious]] CPmax

DP
which1

CP

C◦

that
S

t1 VP

was delicious

Well, we know how to interpret terminal nodes with indices: Via the Pronoun Rule. So we’ll need an
assignment. Let’s pick . . . g. The Pronoun Rule gets a meaning of g(1) for the trace t1, and that’s of type
e.1

(22) J VP Kg = λx ∈ De. delicious(x) : ⟨e, t⟩
(24) J t1 Kg = g(1) : e

We can plug the latter into the former: FA : t
delicious(g(1))

PR : e
g(1)

NN : ⟨e, t⟩
λx ∈ De. delicious(x)

This leaves us with a saturated proposition. Uh oh. The complementizer, for now, does nothing. We can
leave it ‘vacuous’ (without any meaning), or give it an identity function meaning:

(25) J thatC K = λp ∈ Dt. p : ⟨t, t⟩

In either case, it just gives you what you had, so now we have the following structure.

CPmax

DP
which1

CP

that was delicious

? : ⟨e, t⟩
λx ∈ De. delicious(x)

J which1 Kg FA : t
delicious(g(1))

How do we get from g(1) is delicious (of type t), compose it with which, and end up with λx ∈ De.delicious(x)?
We have to basically unsaturate a saturated expression. No rule we have can do this: FA saturates, PM and
NN do not saturate, while LT and PR introduce new expressions.

J which1 Kg cannot be introduced with LT, since its meaning is not lexically determined. We can’t use PR,
either, because that would get us (g(1)) of type e, and that cannot compose with delicious(g(1)) of type
t.

Instead, we rely on the concept of predicate abstraction, by which you take an expression, and make a
predicate out of it.

Abstraction takes an expression like delicious(x) and gives you λx[delicious(x)]. In a sense, we just tack on
a λ-operator that binds the variable.

1Recall that the assignment function maps onto De.

4

But wait!!! Our variable has an index: g(1). How do we turn g(1) into x?

To figure that out, let’s start with what g(1) is. It’s a pronoun, interpreted via PR, so its denotation is the
output of plugging 1 into an assignment, g.

If g maps 1 to Tom, then g(1) = Tom. . . and vice versa: If g(1) = Tom, then g maps 1 to Tom. Likewise, if you
find out that g(2) = Yolanda, then you can be sure that g maps 2 to Yolanda. And in the other direction, if
you find out that g maps 3 to Renée, then you can be sure that g(3) = Renée.

So if we want g(1) to turn into x, we just make sure that g(1) equals x. If g(1) = x, then we can be sure that
g maps 1 to x. So do we make sure that g(1) = x? We use assignment modification (see the lecturelet if you
haven’t).

Modfying an assignment directs the assignment to map a certain input to a certain output. So we can
simply modify our assignment g to make sure that it maps 1 to x.

(26) J which1 Kg
1→x

= g1 → x(1) = x

Since g1 → x(1) equals x, we can replace one with the other.

So now, we tack on a λx, and we’ve changed the variable to x:

(27) λx ∈ De. delicious(g1 → x(1)) =
λx ∈ De. delicious(x)

Wizardry: We’ve added a λ-argument!

However, we now need a composition rule that can do all this in one go.

Rule 6:

Predicate Abstraction (PA):
If α is a branching node whose daughters are { βi, γ },
such that βi only dominates an index i, and i ∈ N, then for any
variable assignment a,

Jα Ka = λx ∈ De. J γ Ka
i→x

READ: . . . then for any variable assignment, a, the meaning of α under a equals lambda x in D-sub-e, the
meaning of γ under assignment a, modified so that i maps to x.

This rule applies no matter what ’x’ is, or no matter what a or i are.

Schematically:

(28) α

βi γ

λx ∈ De. J γ Ka
i→x

Jβi Ka Jγ Ka

λx ∈ De. f(x)

i f(a(i))

How does this work? At LF, we assume that the pronoun which is not a variable with an index, but rather
nothing but the index2. Since the index will bind the trace, we say that it is a binder index. We often write
it with a λ-operator to symbolize this binding.

2This assumption creates problems that we’ll deal with later

5

(29) CPmax

1 CP

C◦

that
S

t1 VP

was delicious

CPmax

λ1 CP

C◦

that
S

t1 VP

was delicious

So let’s zoom in to the important part.

(30) CPmax

λ1 CP

that t1 was delicious

PA : ⟨e, t⟩
???

λ1 FA : t
delicious(g(1))

The PA rule operates in three steps.

1. Abstraction adds an argument by tacking on the λx expression.

λx ∈ De.

Jβi Ka Jγ Ka

2. Value Copy copies the sister of the binder as the value condition

λx ∈ De. Jγ Ka

Jβi Ka Jγ Ka

3. Modify assignment to map the index on the binder to the variable introduced by Abstraction. In this
case, the index is i and the variable is x, so the modification is i → x.

λx ∈ De. J γ Kai→x

Jβi Ka Jγ Ka

Let’s try this with our example, which has index 1 and assignment g.

Abstraction

λx ∈ De.

1 delicious(g(1))

Value Copy

λx ∈ De. delicious(g(1))

1 delicious(g(1))

Modify Assignment

λx ∈ De. delicious(x)
λx ∈ De. delicious(g1 → x)(1))

1 delicious(g(1))

Look! We’ve wound up with our property.

6

