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1 at 1:00 - The type of a quantifier

The notion of quantifiers (over entities) was worked out without considering
event arguments, so we’ll see those first.

(1) Every [ dog ]NP [ likes bacon ]VP.
= 1 iff every dog likes bacon

(2) a. J dog K = λx ∈ De. dog(x) : 〈e, t〉
b. J likes K = λy ∈ De. likes(bacon)(y) : 〈e, t〉

Putting these together, we can see that J every dog K is of type e or of type 〈et, t〉.
Type e is unlikely because quantifiers do not refer. So the quantifier phrase
is of type 〈〈e, t〉, t〉, a set of properties. What does that make the type of the
determiner every?
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That’s right, it’s 〈〈e, t〉, 〈〈e, t〉, t〉〉. We usually write this as 〈et, 〈et, t〉〉. When-
ever you see any type of 〈α, 〈β, t〉〉, you are seeing a relation between objects
of type α and objects of type β. So an intransitive verb of type 〈e, st〉 is a rela-
tion between entities and events. When the objects are of the same type, like
〈α, 〈α, t〉〉, we have a relation between (two) objects of the same type. Thus, a
determiner like every denotes a relation between properties of entities.

In the case of the universal quantifier, the relation is this: Every object with the
first property also has the other.

2 at 5:50 - Relating two properties

Every object with the first property also has the other = Every object in the first
set is also in the second set.

The truth conditions of a sentence with a universal quantifier thus depends on
checking every object in the first set to see if it’s in the second.1 Does Fido like
bacon? Does Odie? Does Snoopy?, and so on.

1Obviously, we can’t check every single dog on Earth. So there is a facet of contextual domain
restriction in the use of universal quantifiers. We’ll set that aside for now.
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That means it’s easy to create a context for these. Positive contexts lead to
truth if the VP holds of every member of the set, and negative contexts lead to
falsehood if the VP fails to hold of even one member.

But we cannot conjoin the two sets, as in (3).

(3) every x ∈ De | x ∈ J dog K & x ∈ J likes bacon K

Conjunctions are false if either conjunct is false, so Every dog likes bacon would
lead to falsehood if there is an entity that is not a dog. But crucially, non-dogs
have no bearing on the truth of (1).

We only want the second conjunct link properties with an if. Material implica-
tion, the philosophers call it. Every object is such that IF it is in the first set it
is also in the second. (1) can be recast: Every object is such that IF it is a dog it
also likes bacon.

(4) every x ∈ De | x ∈ J dog K → x ∈ J likes bacon K

(5) ∀x ∈ De [ dog(x) = 1 → likes(bacon)(x) = 1 ]

3 at 11:15 - Unpacking to find J every K

J every K denotes a relation between two properties. Therefore, it also takes two
function arguments. We can replace the functions in the value condition with
variables; whatever the NP is will be plugged in here.

(6) a. ∀x ∈ De [ dog (x) = 1→ likes(bacon) (x) = 1 ]

b. ∀x ∈ De [ f (x) = 1→ g (x) = 1 ]

c. λf ∈ De,t . λg ∈ De,t . ∀x ∈ De [ f (x) = 1→ g (x) = 1 ]
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